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POWER SERIES EXPANSIONS
OF RIEMANN’S ¢ FUNCTION

J. B. KEIPER

ABSTRACT. We show how high-precision values of the coefficients of power se-
ries expansions of functions related to Riemann’s & function may be calculated.
We also show how the Stieltjes constants can be evaluated using this scheme and
how the Riemann hypothesis can be expressed in terms of the behavior of two
of the sequences of coefficients. High-precision values for the coefficients of
these power series are found using Mathematica™ .

1. INTRODUCTION

The functional equation for the { function is normally expressed [3, p. 16]
as

() &s) =&(1 - ),
where
2) &(s) = 5(s = Da=* T (5) ).

It is this function £ and related functions which we will examine via power
series expansions.
Riemann showed [5] that

3) 2@ =1+ /loo (ge‘"z"’) &Y_—Q(t“‘s)/z + 62 dt

and suggested that ¢ can be expanded as a power series in (s — 1/2)2 “which
converges very rapidly.” We will instead look at the power series expansion
about the point s = 1.

In addition to &(s) we also look at the expansions of &'(s)/&(s),
&'(1/s)/&(1/s), and log&(1/s). Note that the zeros of &, i.e., the nontrivial
zeros of (, are singularities of the functions logé(s) and &'(s)/&(s) and that
the mapping s — 1/s maps the critical line to the circle of radius 1 centered
at s = 1. Thus, the Riemann hypothesis can be expressed in terms of the
growth of the coefficients of the power series expansion of &'(1/s)/&(1/s) or of
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766 J. B. KEIPER

log&(1/s): the Riemann hypothesis is equivalent to the radius of convergence
being 1.

2. POWER SERIES EXPANSION OF &(s) ABOUT § = |

To find the power series coefficients of £(s), we examine the derivatives of
&(s) at s = 1. In particular, if we let

oo

(4) 2(s) =) aj(s—1Y,
j=0
then by induction on (3), we get
(5 ag=1 and aj=Bi2+Bj—1 forj>1,
where
(6) Boi=0,  fo=1+3—log2vm),
and
oo [0 Iy J .
(7) Bj = %/ (Ze-" ’") M(\fw(—l)/)m for j > 1.
=1 n=1

3. POWER SERIES EXPANSION OF &'(s)/&(s)

We also wish to get the values of gy, , where
I
s
(8) e Z G (1 -

(The reason for the factor of (—1)* and the subscript of k + 1 will become
apparent below.) To find the values of gy,;, we can multiply the power se-
ries expansion of 2&'(s) by that of 1/(2&(s)). We note that the power series
expansion of 1/(2&(s)) is given by

9) /(2(s)) Zan s—1)",
where

n
(10) ap=1 and a,,=—2aja,,_j,

j=1
as can be seen by examining the product of the expansions of 2&(s) and
1/(24(s)) -

For small values of k£ this method of computing the coefficients g,,; works
well. However, the cost of computing each coefficient increases linearly with
the index. Because, as we shall see below, there is another method whose cost
per term does not increase at all, we only use this method for small k. There is
also an issue of numerical ill-conditioning in the calculation of the g;,; from
the ;. However, this ill-conditioning is not nearly so bad as that of Lehmer’s
method, which loses nearly 0.85 digits per coefficient [4, equation (12)].
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We use a different approach for large k. From the well-known product over
all nontrivial zeros of the { function [3, p. 20],

(1) &) = 2H< 2).

we get

(12) logé(s) = —log2+Zlog( )+Zlog( _1)
(13) =—log2+Zlog(1 )Zk(Z(S_l)).

Note that at s =1 we get the identity }_,log(l —1/p) =0 since £(1) =1/2.
Differentiating (13), we get

&) _ 1 _
4 aT)—Z[?m]“‘”" -

k=1

and we see that

(15) :

= —k'
p » P
Note that the functional equation for ¢ applied to (13) at s =1 yields

(16) Z 20, =0

and applied to (14) at s =1 y1e1ds

(17) gy = — Z Ok.
k=1
In general, the functional equation applied to the jth derivative of (14) yields
e (k-1
(18) 7 =07 Y (T e
k=1

We can use these identities as consistency checks on the values of oy .

For k large, the sum of the —k powers of the nontrivial zeros of the zeta
function is rapidly convergent. For k small we must get the values of g; from
the values of «;.

4. POWER SERIES EXPANSIONS OF RELATED FUNCTIONS
To get the power series expansions for

(1
(19) é(l//s)) Z‘Ek(l
and
(20) log(2£(1/8)) = > (1 - 5)¥,

k=0



768 J. B. KEIPER

we need the following: if

(21) f(2) =) an(z-1)",
n=0
then
1 2 [ im—1\ |
(22) fl=)=ay+ a,| (1-2)",
(3)=or 2 %000
which can be seen from the fact that
A (e . [ "
o (3n) el oo

and collecting like powers of (1—z). Using this, we get the following expressions
for the coefficients:

(24) T0 =01,
K k-1 ;
(25) rk=z(j_1)(_1ya,-+l fork > 1,
j=1
(26) =0,
k .
N e
(27) lk—g ; i—1)0 for k > 1.

As with oy, further identities can be derived, which can be used for checking
consistency. In particular, substituting (18) into the expressions for 7, and A,
we get

(28) Tk=_i(j+i_2)aj’

(29) A =

5. FURTHER OBSERVATIONS
From (28) we see that

(30) m=-3 (1 l)aj_m+z

Jj=m
(31) == [Z (,i—_ll)p"] pm?
p |Jj=m
(32) ==Y (p-1)mpm?
p

69 3G
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Likewise, from (29), 4, can be expressed in terms of a sum over p, namely
(34) = Y- (2= "

" m > p—1 '
In fact, 1,, is just the second central difference of mAi,, :

(35) T = (M + Dimst — 2MAm + (M — 1) A1

From (33) it is clear that the Riemann hypothesis implies that the values of
|tx| are bounded by

(36) Y 1pI7% = 0.04619141793224206762862.....
p

Conversely, if the |7;| are bounded, then by (19) the Riemann hypothesis must
be true. It is also clear that the failure of the Riemann hypothesis (if such is the
case) would be rather difficult to observe in the growth of the numerical values
of the coefficients 7, , since k would have to be extremely large before a (large)
p which is off the critical line would yield |p/(p — 1) large.

Likewise, from (34) it is clear that the Riemann hypothesis implies that 4,, >
0 for all positive m . In fact, if we assume the Riemann hypothesis, and further
that the zeros are very evenly distributed, we can show that

(37) o % logzm B log(27t)2+ 1- v

This comes from the fact [3, p. 132] that the number of zeros p in the critical
strip with 0 <Imp < T is

T T T

15 f

10 r

-10 P

FIGURE 1
Plot of m (lm - (l%ﬁ - M%ﬂ)) .



770 J. B. KEIPER

and (34). Note that this asymptotic conjecture is much stronger than the Rie-
mann hypothesis. Even the coefficient of the log m (not to mention the constant
term) could be altered by a slight preference of the zeros to cluster at, or avoid,
the points 1/2 + 2itan((2k + 1)n/(2m)). This approximation to 4,, agrees
rather well with the observed behavior of these numbers (cf. Figure 1).

6. STIELTJES CONSTANTS
The Stieltjes constants are the numbers y, in the Laurent expansion

(39) L(s) = —+Z( 1) "y"

In this section we show how the coefﬁments o; can be used efficiently to evaluate
the Stieltjes constants.
Taking the logarithm of both sides of (2), we see that

(40) log(s — 1)¢(s) = log2&(s) + %logn - % logm — log [sF (%)] .

Employing equation 6.1.33 (p. 256) of [1] with 1+ z =5/2, we find that

log [sT (%)] = (log2 + y—;—l) + ”—_1(1 — )

(41) L(n
+Z [1 +(1 =97

Substituting this into (40), we get that

log(s — 1){(s) = log2&(s) + [ lognm —log2 + 1 ;9’ _ i C(:ll)z; 1]
n=2

(42) - [%logn+y—;l +3 C(nz),,_ 1} (1—s)
n=2
2l x -1\ 1
_gj[g(j_l)g(zk)n](l—s»

Now we know that
log(s = 1){(s) =p(s— 1)+~
and that

o0
1 )
log2¢(s) == 7aj(l —s)/.
j=1
Hence, to get the coefficients of the constant and linear terms to be correct, we
must have that

(43) Zc’r’l)z;l_ 2y+log\/75
and
(44) 3 c(”z)n_ —log2 — %

n=2
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Furthermore, since for large x

—(n—-1\ __, _j
(45) Z(j_l)x =(x-1)77,
n=j
we get that (42) simplifies to

o0

46)  logls— DLl =75 - D= <

j=2

o + i(Zk - 1)-1} (1—s).
k=2

By taking the exponential of this series we get that yo =y and
1 k+1,3/2 _
e _ (0k+1+C( /2 _, P

2K+ k—1)!

k! k+1
(47)

_ k+1-—j,3/2
TG [""*“"* Y )] )

It should be noted that we could also map s to 1/s in (46) and get the
series expansion of log(1/s — 1){(1/s) about s = 1. If we do this, we find
that the behavior of these coefficients is very similar to the behavior of the 4,, .
In particular, we empirically find that these coefficients are approximated by
Am — (0.75 — 0.134/m)/m . Since the evaluation of these coefficients is much
more ill-conditioned than that of the A,,, and the results are so similar, we do
not pursue this further.

We note here that the values we found for the Stieltjes constants are not
consistent with those presented in Table 2 of [2]. In particular, the number
of correct digits presented there decreases linearly from about ten for y3s to
about three for yso. The value for yss is correct to ten digits, however. (It
is clear that the error is not in our values, since we can use (39) to evaluate
¢(30) with an absolute error of less than 10726 while the term involving yso
has magnitude greater than 10'°0.)

7. PRACTICAL CONSIDERATIONS

The computations associated with this paper were performed over a period of
several months using Mathematica™ on a Sun SPARC-station 1. (A few of the
results are presented in the appendix. More complete results are available by e-
mail from the author.) With careful coding these computations can probably be
extended by at least an order of magnitude, more on a more powerful computer.
Here we discuss some of the practical considerations in such computations.

A major difficulty is the evaluation of S; using (7). In fact there are two
things that can be done here to make the computation efficient. First the theta
function Y7, e~"'™ can be evaluated for any ¢ with a single evaluation of
the exponential function and relatively few multiplications. The sum converges
rapidly and we include only the significant initial terms. The terms ¢, in the
sum are evaluated as follows:

1. Let ¢, =e™™, a=c?,and b =ac;.

2. Let ¢yp1 = cuby and by = bya.
This algorithm is based on the fact that the differences of successive square
integers are the successive odd integers.



772 J. B. KEIPER

The other thing that can be done to make (7) efficient is to use a double-
exponential quadrature routine. In particular, by reparametrizing the integral
with ¢ = 1 +e" and using the trapezoid rule with sufficiently small stepsize (i.e.,
progressively halving the stepsize until the estimated error is sufficiently small),
the error converges to 0 faster than any power of the stepsize. Since we have
(17) and (18), we can check for consistency in the values of g, and do not need
to go to great lengths to estimate the error incurred in the quadrature routine.

Another point to be aware of is that, as mentioned in §3, only the first several
hundred values of ¢;, can be efficiently calculated by dividing the series expan-
sion of £’(s) by the series expansion of &(s) ; for larger values of k, gy is best
evaluated by directly summing inverse powers of the zeros of the { function.

Finally, for very extensive calculations, A, calculated using (27) suffers from
ill-conditioning. Since A, can also be calculated using (34), we can combine
these two formulae and express A, using (34), where only the first several hun-
dred zeros are included, and (27), where the first several hundred zeros are not
included in the o;. In particular,

N pi m m m
48 My = [1—(-—’—-) ]— —lf(.)a» ,
(48) =) |5 ()
where
N ) oo ]
on=0,-) 0= »’
i=1 i=N+1

This splitting was not used in the calculations presented in the appendix.

APPENDIX
k ag
0 +1 000000000000000000000000000000000000000000000000000000000000000000000000000000000000 (0)
1 +2 3095708966G12103381431024790649529162193212715205075952539207221297135647672457997080 (-2)
2 42 3343864534226G18313488235688581048104526888044078135209348696644526116274679696133016 (-2)
3 +4 97TO838409220486723511717743894883531533405119031116449729736222496716951590001579428 (-4)
4 +2 531817303165270050561210841163734781216247612468051693200452500966662325514970559727 (-1)
5 +50502547922191741695852352250131848021559498551159465216106529482787922163094854322300 (-6)
[ +1 7209870418615355777801549739040941320867577017027364049273265354190476123275702562190 (-6)
7 +3 237R114C18R1076960348065919673406208942012226904286279830767694635723758098500749485 (-8)
8 +8 315968250027721630708768786514767520775647323890266412483461676055203222011449340850 (-9)
9 +1485241021491894004522583848964370753159097364504236458745172051470454227592811777777 (-10)
10 +3 065560232763331351027949996847607133510104395172773667947752758424716558586701434523 (-11)
20 41 2134779062287543511355966253513261682719642973689436922822958351364232532287489188071 (-24)
50 +1 070429069154838313385730657548585059360262503178231537091411311695927258846500592155 (-71)
100 +1 240882823625066208930372915264826652367987821801149718351510162740371686227273127169¢ (-161)
150 49 304133713549577941106852678425454215254212414733219503349190471539887089162064616490 (-260)
k AL
0 -6 93]47180559945309417232]21158]7656807556013436025525412068000949339362]9606947]50059 (-1)
1 42 309570896612103361431024790649529162193212715205075952539207221297135647672457907060 (-2)
2 +4 6172867G14023335192864243096033943387066108314123254G09816298966992G94601558057705R6 (-2)
3 +6 9212973518108267930497348872601068994212026393200243617482708163383628392840455365237 (-2)
4 +9 219761987306040964762787240943901806554167349021320120577971421273656330664447565720 (-2)
5 +11510854289223549048622128109857276671349132303595990790584951638710000427672472R156G4 (-1)
6 +1.379276687137298829C416713700341666356138966078654483432341429936496639917322128G8017 (-1)
7 +1606371596529942129404028725738536629228244204616261630354868022262489016494508610357 (-1)
8 +1 832194596433825790819393177472185984699809827343180582307322192294743785654454742098 (-1)
9 42 056573387091704617028938742134330474123655341004356019608497727988730141462823206002 (-1)
10 42 279339363103157743693034057368445338074838594273812764961484306973082008101413724070 (-1)
20 +4.384638436046607564799730676723601114195612725190971614216281556532840697163680421700 (-1
50 48 7062192976748038597903939969723137228R80010048998112057837447733612870R2489859282130 (-1)
100 +1 1860377537679132092736469839793790269329870235932278763421893659062242625036575817237 (0)

200 +1 533278824256722832062361275785340972094004247858449035385899349906030659183059976859329 (0)
500 +1 983800185984489894093667592662983365128441521936916326414232731104012303747101202110 (0)
1000 +2 3260531616864G6457406504694083223815804498204169294222689063250847G4229536404176G2820 (0)
2000 +26758797691007517569053491407856702582316906027478670421829£0870731022804306868201118 (0)
4000 43 017616905899266567675908190706132690834964073030616134616701738744134221681561687322 (0)
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o
+2 30957080001210338]431024790649529162193512715205075952539207221297135617672457097080
—4 615431729580460275710799037907730353026796232414499034884845350804267624966695547012
—1.11158231452105922762668238914578472964189248986518770273452672891212300062G240226GR20
+7 36272212616895183267713070306015113128315962741002904463423576303768176581718916822441
+7 1509335576260773580109391313245132240664933152756876892430773499738867053433453794881
—2 814364169387662616067156404761227675859726422070049572022672000607516812449822820282
—4 57419114970477211116269258988882906750035353990838094208405330642824417045059579G3250
+1 2688681109507607190125475731981339303292111145778642933676333984922232850203209798305
+2 827437155055887089334396878061404036954927289641230391634424272672199406527476371645
—5097714847151874594892026289791304537726526162047544413570098071851241127703763514117
+1 482309329862907928147936992117261052747149970744927574926928515355665179386555269285
+1161679157979498095115971305675998351333604072745152565985494150992931702385953078585
—1623533779132046013719927026422027056500639639687899676815890529499817817190817339207
+1.089720598777509865110694218110721704667264958705043782173997019606510472169211478264
—7 7519974395984675115926991862936751337244546944474772622803612990996333G4630822424485

Stieltjes constants
+5.772156649015328606065120900824024310421593359399235988057672348848677267776646709369
—7.281584548367672486058637587490131913773633833433795259900655974140143357151148487809
—9.6903631928723184845303860352125293590658061013407498807013654518507553822804141719080
42 053834420303345866160046542753384285715804445410618245481483336913834492112970053571
+2 325370065467300057468170177526068000904469413784850990758040907124841005315521900302
+7.933238173010627017533348774444448307315394045848870757342562698231482118017152023797
—2 387693454301996008724218419080042777837151563580786314764253073910675599929638714369
—5.272895670577510460740975054788582819962534729698953310134042268856827324651411821440
—3.521233538030395096020521650012087417291805337923503566573315073642817765060653010601
—3.439477441808804817791462379822739062078953859444162975929190484315010334446152837096
+2.053328149090647946837222892370653029598537741667643038402087143530090240710691751985
+4.663435615115594494005948244335505251131434739256889976707266280985445821300329007011
+1.268236026513227165967252536486575555384835759448901701980956993469732544041271410075
—4.253401571708026962314438519727835824702893105347346897162431985636244871067986720565
+8 0288537315068429932566464259898920148424673878973112390001195006142409263025740
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