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POWER SERIES EXPANSIONS 
OF RIEMANN'S 4 FUNCTION 

J. B. KEIPER 

ABSTRACT. We show how high-precision values of the coefficients of power se- 
ries expansions of functions related to Riemann's 4 function may be calculated. 
We also show how the Stieltjes constants can be evaluated using this scheme and 
how the Riemann hypothesis can be expressed in terms of the behavior of two 
of the sequences of coefficients. High-precision values for the coefficients of 
these power series are found using Mathematica TM. 

1. INTRODUCTION 

The functional equation for the function is normally expressed [3, p. 16] 
as 

(1) 4(S) S), 

where 

(2) 4(s) = 5 (s - 1)r-s/2 (2) C(S). 

It is this function 4 and related functions which we will examine via power 
series expansions. 

Riemann showed [5] that 

(3) 24(s) = 1 + j ( -e n rt) s(s -)(t(I_-)/2 + ts/2) dt 

and suggested that 4 can be expanded as a power series in (s - 1/2)2 "which 
converges very rapidly." We will instead look at the power series expansion 
about the point s = 1 . 

In addition to 4(s) we also look at the expansions of 4'(s)/l(s), 
4'(l/s)/g(l/s), and log4(l/s). Note that the zeros of 4, i.e., the nontrivial 
zeros of C, are singularities of the functions logt(s) and 4'(s)/l(s) and that 
the mapping s l- 1/s maps the critical line to the circle of radius 1 centered 
at s = 1. Thus, the Riemann hypothesis can be expressed in terms of the 
growth of the coefficients of the power series expansion of J'( 1 Is) /1( 1 Is) or of 
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log (l/s): the Riemann hypothesis is equivalent to the radius of convergence 
being 1. 

2. POWER SERIES EXPANSION OF 4(S) ABOUT S = 1 

To find the power series coefficients of 4(s), we examine the derivatives of 
4(s) at s = 1 . In particular, if we let 

00 

(4) 24(s) = Za(s - 1))i 
j=O 

then by induction on (3), we get 

(5) ao = l and aj =fj-2+flj-1 for j > 1, 

where 

(6) f-1 = 0, o0 = 1 + 2 - log(2k) , 2 
and 

If 0 0(0- 2t (log _'t~ 
(7) ,B: =!J ( e- n nt) ( Vtt) (+ (- l)j) dt for j > 1. 

3. POWER SERIES EXPANSION OF ,'(s)/,(s) 

We also wish to get the values of lk+1 , where 

~'() 
00 

(8) 4(5) = Z ak+l(l-S)k. (8) c~~~~s) ~k=O 

(The reason for the factor of (-_1)k and the subscript of k + 1 will become 
apparent below.) To find the values of lk+I, we can multiply the power se- 
ries expansion of 24'(s) by that of 1/(24(s)). We note that the power series 
expansion of 1/(2,(s)) is given by 

00 

(9) 1/(24(s)) = an(S- -)n 

n=O 

where 
n 

(10) ao = 1 and an =- ajanjI 

j=1 

as can be seen by examining the product of the expansions of 2,(s) and 
I/ (24 (s)) 

For small values of k this method of computing the coefficients lk+1 works 
well. However, the cost of computing each coefficient increases linearly with 
the index. Because, as we shall see below, there is another method whose cost 
per term does not increase at all, we only use this method for small k. There is 
also an issue of numerical ill-conditioning in the calculation of the lk+1 from 
the f3j. However, this ill-conditioning is not nearly so bad as that of Lehmer's 
method, which loses nearly 0.85 digits per coefficient [4, equation (12)]. 
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We use a different approach for large k. From the well-known product over 
all nontrivial zeros of the C function [3, p. 20], 

(11)~~~~~~~~ (11) 4~~~(s) = -n (1 - 5)~ 

we get 

(12) log4(s) -log 2+E1lgP +Elog I- S-I 

(13) =-log2+Zlog(1 ) E k ( (z_ ) ) 

Note that at s = 1 we get the identity Ep log(1 - l/p) = 0 since c(1) = 1/2. 
Differentiating (13), we get 

(14) '(s) E [- 12 k] (1 s) 

and we see that 

(15) Jk =Z( _)k Zpk 
p pp 

Note that the functional equation for 4 applied to (13) at s = 1 yields 
00I 

(16) EZjak =0?, 
k=i 

and applied to (14) at s = 1 yields 
00 

(17) E1 =-Zck- 
k=1 

In general, the functional equation applied to the jth derivative of (14) yields 

(18) 1) (k--1) 

We can use these identities as consistency checks on the values of (k. 
For k large, the sum of the -k powers of the nontrivial zeros of the zeta 

function is rapidly convergent. For k small we must get the values of (k from 
the values of aj . 

4. POWER SERIES EXPANSIONS OF RELATED FUNCTIONS 

To get the power series expansions for 

(19) c~~~~~'(1/s) 00 
(Il 9) (I/Sa) = : ETk (l _ S)k 

k=O 

and 
00 

(20) log(24(l/s)) = Z Ak(1 _ S)k, 
k=O 
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we need the following: if 
00 

(21) f(z) = Zan(z- l)', 
n=O 

then 

(22) (z) =ao+ [ (n2 _ )an] (-z) 

which can be seen from the fact that 

(23) (z ) [_(1_Z)]n (1 Z)n[( Z)kj 

and collecting like powers of (1 -z). Using this, we get the following expressions 
for the coefficients: 

(24) To = a1 , 

(25) k =Z(k (-1)iaj+l for k > 1, 

(26) AO = ?, 

(27) k E (-1)J (k -I j for k > 1. 
j=1 i 

As with (k, further identities can be derived, which can be used for checking 
consistency. In particular, substituting ( 18) into the expressions for Tk and Ak, 
we get 

00 j + k -2 
(28) Tk E ( k J )> 

j=2 

j=1 

5. FURTHER OBSERVATIONS 

From (28) we see that 

(30) Tm-1 =-E (m$j)cj-m+2 
j=M 

(31) = -A [ 
- 

(J 1i)p-] pm-2 

(32) = J- (pZ_- 1)-mpm-2 
p 

(33) E I ( p 
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Likewise, from (29), Ak can be expressed in terms of a sum over p, namely 

m r - (P-1)] 
In fact, Tm is just the second central difference of mAm: 

(35) Tm = (m + I)Am+l - 2mAm + (m - I)Am-1. 

From (33) it is clear that the Riemann hypothesis implies that the values of 
Tk are bounded by 

(36) E = 0.04619141793224206762862.... 
p 

Conversely, if the ITk I are bounded, then by (19) the Riemann hypothesis must 
be true. It is also clear that the failure of the Riemann hypothesis (if such is the 
case) would be rather difficult to observe in the growth of the numerical values 
of the coefficients Tk, since k would have to be extremely large before a (large) 
p which is off the critical line would yield p/(p - 1)lk large. 

Likewise, from (34) it is clear that the Riemann hypothesis implies that Am > 
0 for all positive m . In fact, if we assume the Riemann hypothesis, and further 
that the zeros are very evenly distributed, we can show that 

(37) logm _ log(27Q) + 1- y 
(37) A 

r02 2 
This comes from the fact [3, p. 132] that the number of zeros p in the critical 
strip with 0 < Im p < T is 

(38) ~~ ~~T T T 
(38) N(T) 2 log2- 

150 

lo~~~~~~~~~~~~' [00 0 7; A 0 

-5 

-10 

FIGURE 1 
Plot of m (iAm (om -l og(27r)+1-y)) 
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and (34). Note that this asymptotic conjecture is much stronger than the Rie- 
mann hypothesis. Even the coefficient of the log m (not to mention the constant 
term) could be altered by a slight preference of the zeros to cluster at, or avoid, 
the points 1/2 + 2itan((2k + l)ir/(2m)). This approximation to Am agrees 
rather well with the observed behavior of these numbers (cf. Figure 1). 

6. STIELTJES CONSTANTS 

The Stieltjes constants are the numbers y, in the Laurent expansion 
00 

(39) C(S~) = 1 + Ef_ I)n 
A 

(S- _ )n . 

In this section we show how the coefficients aj can be used efficiently to evaluate 
the Stieltjes constants. 

Taking the logarithm of both sides of (2), we see that 

(40) log(s - I)>(s) = log 2c(s) + logic - 1 2 log7r - log [SF (i)] 
Employing equation 6.1.33 (p. 256) of [1] with 1 + z = s/2, we find that 

log[sF()]= (log2+Y2 )+ 2l(I-s) 

(41) ~~~~~~~+ E n ) [ + (1s)]n 
n=2 

Substituting this into (40), we get that 

log(s - I)>(s) = log2c(s) + log 7r - log 2 + Y1 - C2 ] _ 

L ~~~~ ~~n=2J 

(42) [2plog7r + 2+ n) 11(1 - s) 

7 JiJ-) E (2k)n 

Now we know that 
log(s - 1)>(s) = y(s - 1) + 

and that 
00 

log 2c (s) = - U -aj(1 - s)'. 
j=l 

Hence, to get the coefficients of the constant and linear terms to be correct, we 
must have that 

(43) 
02 

C(n) 
- 

= Y + log 
-v-- 1: n2n 2 2 

n=2 
and 

(44) 
2 

C(n) 
- 

log2 - 
n=2 
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Furthermore, since for large x 

(45) ~ (n-: _ ~ 
-n ( _})j 

we get that (42) simplifies to 
00 r 0 1-i 

(46) log(s- )(s) =Y(s -) - Iaj + - (1- sk. 
j=2 L = 

By taking the exponential of this series we get that yo = y and 

Yk I 
Uk1 C(k + I, 3/2) Y k-1 

k! k+1 I k+ 2k+1 (k-1)! 

(47) k-i lk1-3/2)1 

(X-1)! L k+ 11i 2k+l-j J 

It should be noted that we could also map s to 1/s in (46) and get the 
series expansion of log(1/s - I)C(l/s) about s = 1 . If we do this, we find 
that the behavior of these coefficients is very similar to the behavior of the Am . 
In particular, we empirically find that these coefficients are approximated by 
Am - (0.75 - 0.134/m)/m. Since the evaluation of these coefficients is much 
more ill-conditioned than that of the Am, and the results are so similar, we do 
not pursue this further. 

We note here that the values we found for the Stieltjes constants are not 
consistent with those presented in Table 2 of [2]. In particular, the number 
of correct digits presented there decreases linearly from about ten for Y36 to 
about three for Y50. The value for Y55 is correct to ten digits, however. (It 
is clear that the error is not in our values, since we can use (39) to evaluate 
C(30) with an absolute error of less than 10-26 while the term involving Y50 

has magnitude greater than 1010.) 

7. PRACTICAL CONSIDERATIONS 

The computations associated with this paper were performed over a period of 
several months using Mathematica TM on a Sun SPARC-station 1. (A few of the 
results are presented in the appendix. More complete results are available by e- 
mail from the author.) With careful coding these computations can probably be 
extended by at least an order of magnitude, more on a more powerful computer. 
Here we discuss some of the practical considerations in such computations. 

A major difficulty is the evaluation of f3j using (7). In fact there are two 
things that can be done here to make the computation efficient. First the theta 
function E' i e-n 27r can be evaluated for any t with a single evaluation of 
the exponential function and relatively few multiplications. The sum converges 
rapidly and we include only the significant initial terms. The terms Cn in the 
sum are evaluated as follows: 

1. Let cl = eat, a= c 2, and bi = ac1 . 
2. Let cn+1 = cnbn and bn+l = bna. 

This algorithm is based on the fact that the differences of successive square 
integers are the successive odd integers. 
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The other thing that can be done to make (7) efficient is to use a double- 
exponential quadrature routine. In particular, by reparametrizing the integral 
with t = 1 + eT and using the trapezoid rule with sufficiently small stepsize (i.e., 
progressively halving the stepsize until the estimated error is sufficiently small), 
the error converges to 0 faster than any power of the stepsize. Since we have 
(17) and (1 8), we can check for consistency in the values of (k and do not need 
to go to great lengths to estimate the error incurred in the quadrature routine. 

Another point to be aware of is that, as mentioned in ?3, only the first several 
hundred values of (k can be efficiently calculated by dividing the series expan- 
sion of 4'(s) by the series expansion of 4(s); for larger values of k, Uk is best 
evaluated by directly summing inverse powers of the zeros of the C function. 

Finally, for very extensive calculations, Ak calculated using (27) suffers from 
ill-conditioning. Since Ak can also be calculated using (34), we can combine 
these two formulae and express Ak using (34), where only the first several hun- 
dred zeros are included, and (27), where the first several hundred zeros are not 
included in the aj . In particular, 

(48) M M [ N ( _ m] m 1m 

where 
N 00 

UIj,N=UIj ZP,'j Z ,' (Jj, = (j-a i =E Pi 
i=1 i=N+1 

This splitting was not used in the calculations presented in the appendix. 

APPENDIX 

k Ofk 
0 + (000000000000000000000000000000000000000000000000000000000000000000000000000000000000 (0) 
1 +2 309570896(112103381431024790649529162193212715205075952539207221297135647672457997080 (-2) 
2 +2 334386453422618313488235688581048104526888044078135299348696644526116274679696133916 (-2) 
3 +4 979838499229486723511717743894883531533405119031116449729736222496716951590001579428 (-) 
4 +2 531817303165270050561210841163734781216247612468051693200452509966662325514970559737 (-4) 
5 +5050254792219174169585235225013184802155949855115946521610652948278792216309485432300 (-l) 
6 +1 720987041861',355777801549739040941320867577017027364049273265354199476123275702'G219 (-6) 

+3 23784 14618810769f603480659196734062089420122269042862798307676946357237758098590749485 (-$) 
8 +8 315968250027721630708768786514767520775647323890266412483461676055203222011449340850 (-9) 
9 +1 485241921491894004522583848964370753159097364504236458745172051470454227592811777777 (-10) 

10 +3 0655602327633313510279499968476071335 10104395172773667947752758424716558586791434523 (-Il) 
20 +1 213477962287543511355966253513261682719642973689436922822958351364232532287489188071 (-24) 
50 +1 07042906915483831338573065754858505936026250317823153709141131169592725884659'05931'5 (.71) 

100 + 1 2408828236250662089303729152648266523679878218011497183515101627403718622727312716'9(; (-I(1) 
150 +9 304133713549577941106852678425454215254212414733219503349190471539887089162064618490 (-26O) 

k Ak 
0 -6 931471805599453094172321214581765680755001343602552541206800094933936219696941715(059 (-1) 
1 +2 30957089661210338143102479064952916219321271 520507595253920722129713564 7672457997080 (-2) 
2 +4 Gi172867614023335192864243096033943387066108314123254699816298966992694601558057705F,6 (-2) 
3 +G 921297351810826793049734887260106899421202639320024361748270816338362839284945536537 (-2) 
4 +9 219761987306040964762787240943901806554167*3490213201205779714212736563306644475G5730 (-2) 
5 +1 151085428922354904862212810985727667134913230359599079058495163871909042767247291564 (-1 
6 +1.37927668713729882904167137003416663561389660786544834323414299364966399173221286,O17 (-1) 
7 +1 60G371596529942129404028725738536629228244204616261630354868022262489016494508610357 (-1 
8 +1 832194596433825790819393177472185984899809827343180582307322192294743785654454743098 (-1) 
9 +2 05657338709170461702893874213433047412365534100435601960849772798873014 1462823208002 (-.1 

10 +2 2793393631931577436930340573684453380748385942738127649614843069730829981014113724070 (-I) 
20 +4.38463843G04660756479973067672360111419561273519097161421628155653 3840697163G8012 1700 (-I) 
50 +8 706219297674803859790393996972313722888091004899811205783744773361287082489859382130 (.1) 

100 +1 1860377537iC79132992736469839793792693298702359322787634218936590623412C'2503G575817237 (0) 
200 +1 533278824256723832063612757853409720940042478584499538589934990609065918305997685939 (0) 
500 +1 983800185984489894093667592662983365 128441.5219369163264142327311940123037471012991 10 (0) 

1000 +2 32t(05310)lt8t*4GtD457406504t94083223815804498204169294222t 890t3250847G422953(;40417t;?8?0 (0) 
2000 +2 675879769190751756905349140785670258231G906027478G70421829608707310228043068C8201118 (() 
4000 +3 017616905899266567675908190706132690834964073030616134616701738744134221G81561687322 (0) 
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k (k 
1 +2 309570896612103381431024790649529162193212715205075952539207221297135647G72457997080 (-2) 
2 -4 615431729580460275710799037907730353026796232414499034884845350804267624966695547013 (-2) 

3 -1.1115823145210592276266823891457847396418924898651877027345267289121300062624022G6R30 (-.I) 
4 +7 362722126168951832G771307030601511312831596274100290446342357630378175R8171891G822441 (.5) 
5 +7 150933557626077358010939131324513224066493315275687689243077349973886795343345379881 (-7) 
G -2 814364 16938766261606715640476123767585972642 2?07904957203 267200060751681?.444983,3.830282 (-7) 
7 -4 57419114970477211116269258988882906.7500353539908809420840533064282441704505957969250 (-9) 
8 +1 268868110950760719012547573198133930329211114577864293367633398492232850203209798 '05 (-9) 
9 +2 82743715505588708933439687806140403G9549272896412393916344242726721994o6527476371l6'15 (1l) 

10 -5 9977148471518745948920262897913945377265261620475444135700980718512411277037G35141117 (-12) 
20 +1 48239932986290792814793699211726105274714997074492757492692851535566517938G555-69385 (-23) 
tO +1 161679157979498095115971305675998351333604072745152565985494150992931702385953078585 (-58) 

100 -1 623533779132046013719927026422027056500639639687899676815890529499817817190817339207 (-115) 
200 +1.089729598777509865119694218110721704667264958705043782173997019606510472169211478264 (-230) 
400 -7 751997439598467511592699186293675133724454694447477262280361299099633364630822424485 (4 63) 

k Stieltjes conlstall tsyk 
0 +5.772156649015328606065120900824024310421593359399235988057672348848677267776646709369 (-1) 
1 -7.281584548367672486058637587490131913773633833433795259900655974140143357151 148487809 (-2) 
2 -9.690363192872318484530386035212529359065806101340749880701365451850755382280414171980 (.3) 
3 +2 053834420303345866160046542753384285715804445410618245481483336913834492112970053571 (-3) 
4 +2 325370065467300057468170177526068000904469413784850990758040907124841005315521900302 (-3) 
5 +7.933238173010627017533348774444448307315394045848870757342562698231482118017152023797 (-4) 
6 -2 387693454301996098724218419080042777837151563580786314764253073910675599929638714369 (-4) 
7 -5.2728956705775104607409750547885828199625347296989533101340422688568273246541 1821440 (-4) 
8 -3.521233538030395096020521650012087417291805337923503566573315073642817765060653010801 (-41) 
9 -3.43947744180880481779146237982273906207895385944 4162975929190484315010334446152837096 (-.5) 

10 +2.053328149090647946837222892370653029598537741667643038402087143530090240710691751985 (-4) 
20 +4.663435615115594494005948244335505251 131434739256889976707266280985445821300329007011 (-4) 
50 +1.268236026513227165967252536486575555384835759448901701980956993469732544041271419075 (2) 

100 -4.253401571708026962314438519727835824702893105347346897162431985636244871067986720565 (17) 
150 +8 0288537315068429932566464259898920148424673878973112390001195006142409263025740 (35) 
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